Cultural Change

Evidence from Three Centuries of U.S. Local Newspapers

Max Posch (formerly Max Winkler) University of Exeter

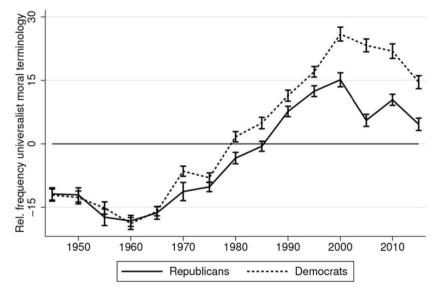
ASREC Conference 2023

March 18, 2023

Studying cultural change through text analysis of historical corpora

- Historical text documents are an exceptional source to track the evolution of cultural traits across space and over time
- A popular design to study cultural change using historical text comprises:
 - 1. Drawing on an existing **dictionary** of keywords presumably related to the cultural trait of interest
 - 2. Counting the prevalence of these keywords in a readily available corpus of historical texts, such as the **US Congressional Record** or **Google Books Ngrams**

Example: evolution of universalism (Enke, JPE, 2020)



Example: evolution of norm tightness (Jackson et al., NHB, 2019)

 Table 1 | Words selected to comprise the final tightness and looseness indices

Tight words	Loose words				
Restrain	Allow				
Prevent	Freedom				
Comply	Create				
Constrain	Variability				
Uniformity	Autonomy				
Adhere	Openness				
Enforce	Leeway				
Proscribe	Flexibility				
Abide	Broadmindedness				
Dictate	Transformatory				
Circumscribe	Customize				
Impose	Subjectivities				
Uphold	Modify				
Discourage	Limitless				
Compel	Empower				
Forbid	Adaptiveness				
Confine	Pluralism				
Govern	Personalize				
Prohibit	Encourage				
Preclude	Diverse				

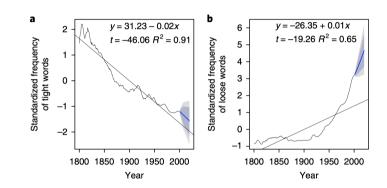


Fig. 1 | Frequencies in tight and loose words in books from 1800 to 2000.

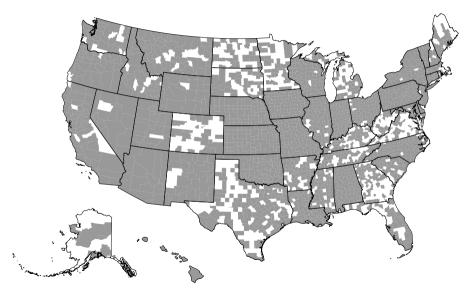
Limitations of this approach

- 1. Data
 - Difficult to disentangle true cultural changes from changes in topics or genre composition over time e.g., large rise in fiction in Google Books corpus after 2000
 - Hard to examine causal relationships limited spatial variation along with time variation
 - \Rightarrow We access text from thousands of local newspapers going back to 1700s
- 2. Method
 - Open questions about best practices for keyword selection; e.g., semantic changes over time, emergence of new words, part-of-speech balance
 - Limited options to validate against conventional psychological data (e.g., from surveys)
 - \Rightarrow Today: we propose refinements and validation checks for dictionary-based approaches
 - ⇒ Future: we focus on (contextualized) embeddings from language models

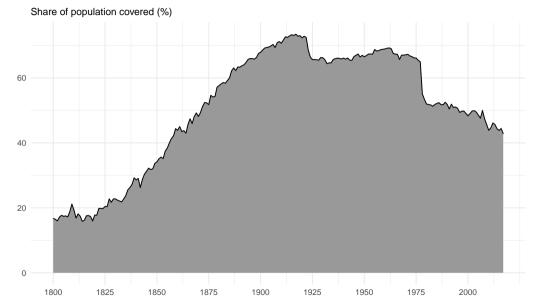
Data: digitized U.S. newspaper archives

- We draw on **newspapers.com** and **newspaperarchive.com** to compile a novel database containing **more than 1B pages** from local newspapers
- We can link newspaper text to key metadata: newspaper name, publication date, page, city of publication, circulation, political affiliation, and much more
- The database covers 2,405 U.S. counties from all states and goes back to the 1700s
- Newspaper markets in the U.S. have been highly local only one (two) daily newspaper in 77% (14%) of counties between 1869 and 2004 - Gentzkow + 2011
- ⇒ Testable hypothesis: language in newspapers reflects local culture

Newspaper database covers 2,405 counties from all states



Newspapers cover large but unbalanced population share over time



Method: dictionary-based approach

- We draw on the Tight-Loose dictionary created by Jackson et al. (NHB, 2019)
- The dictionary contains 2x20 keywords whose Google News word2vec coordinates are close to the coordinates of 2x8 seed words related to Tight-Loose theory

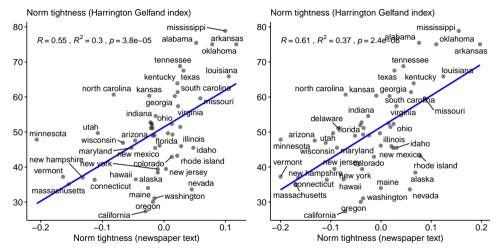
$$\mathsf{Norm \ Tightness} = \mathsf{Avg}_t \left[\mathsf{Scale} \left[\frac{\texttt{\# \ tight \ word}_t}{\mathsf{doc \ length}} \right] \right] - \mathsf{Avg}_t \left[\mathsf{Scale} \left[\frac{\texttt{\# \ loose \ word}_t}{\mathsf{doc \ length}} \right] \right]$$

where a document is all newspaper text in newspaper i located in county c in year t

Method: refining and validating the dictionary

- Semantic substitution: Substitute each word with semantically closest neighbor, then recompute the construct of interest and report its correlation with the original measure ($\rho \approx 1$)
- **Part-of-speech balancing:** We augment the dictionary by balancing nouns, verbs, adjectives, adverbs, etc.
 - e.g., if dictionary contains prohibit, we add prohibited, prohibiting, prohibition, prohibitive, and prohibitively
 - ho=0.896
- Validation against survey-based data and other proxy measures (next slides)

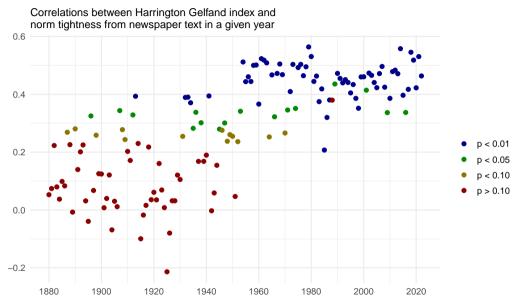
Does the text-based measure correlate with conventional psych data?



Data shown on y-axis are from Harrington Gelfand (PNAS, 2014). Left: original dictionary; right: refined dictionary.

Refined dictionary performs about 10% better than the original norm tightness dictionary created by Jackson et al. (NHB, 2019)

Text from before 1950s less correlated with modern psych data

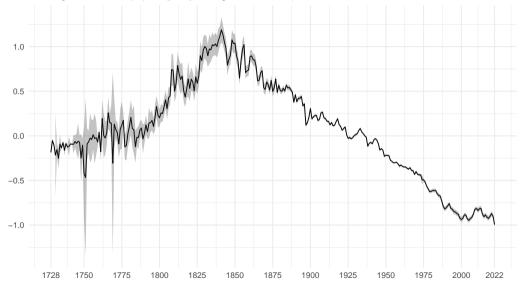


Decade-by-decade rank correlations suggest break during 1950s

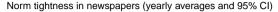
decade1900	1	0.56	0.32	0.28	0.21	0.11	0.09	0	-0.04	-0.07
decade1910	0.56	1	0.56	0.41	0.35	0.26	0.24	0.11	0.07	0.07
decade1920	0.32	0.56	1	0.72	0.55	0.31	0.24	0.1	0.03	0.02
decade1930	0.28	0.41	0.72	1	0.69	0.42	0.32	0.17	0.09	0.04
decade1940	0.21	0.35	0.55	0.69	1	0.59	0.45	0.28	0.17	0.17
decade1950	0.11	0.26	0.31	0.42	0.59	1	0.79	0.66	0.5	0.44
decade1960	0.09	0.24	0.24	0.32	0.45	0.79	1	0.78	0.55	0.48
decade1970	0	0.11	0.1	0.17	0.28	0.66	0.78	1	0.69	0.59
decade1980	-0.04	0.07	0.03	0.09	0.17	0.5	0.55	0.69	1	0.76
decade1990	-0.07	0.07	0.02	0.04	0.17	0.44	0.48	0.59	0.76	1

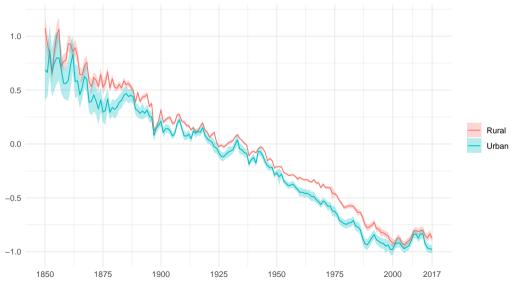
Frequency of tight vs. loose words in newspapers from 1728 to 2022

Norm tightness in newspapers (yearly averages and 95% CI)



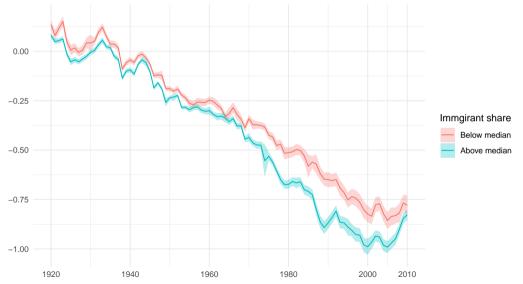
Looser language in newspapers in urban compared to rural locations





Looser language in newspapers in places with higher immigrant share

Norm tightness in newspapers (yearly averages and 95% CI)



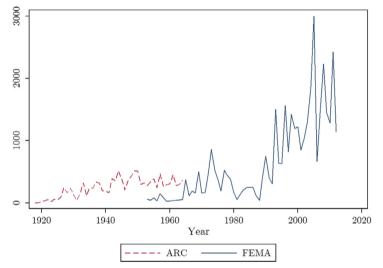
Do natural disasters tighten social norms?

- Data: all U.S. federally designated natural disasters from 1918 to 2012, aggregated to county-decade level Boustan + 2020
- Empirical strategy: standard difference-in-differences equation

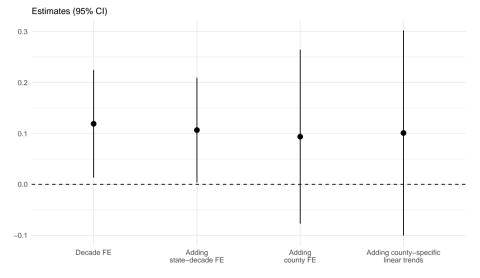
Tightness_{*c*(*s*)*t*} = β Severe disaster indicator_{*ct*} + α_c + α_{st} + $\alpha_c \times t$ + ε_{ct}

- *c, s, t* denote county, state, year
- Severe disaster indicator = 1 if a disaster with \geq 25 fatalities occurs b/w t 10 and t
- *α*_c: county-fixed effects, absorbing time-invariant factors (e.g., geography)
- α_{st} : decade-fixed effects, absorbing time-variant state-specific factors (e.g., economic, cultural, or environmental trends, state laws)
- $\alpha_c \times t$: county-specific linear trends, removing local factors that smoothly change over time (e.g., local long-term economic progress)
- Standard errors clustered on states

Annual disaster count in U.S. from 1918 to 2012 trends upwards



Natural disasters increase norm tightness in newspapers



 \Rightarrow Severe disasters increase norm tightness by \approx 0.1 s.d. or 10% of gap b/w VT and AR

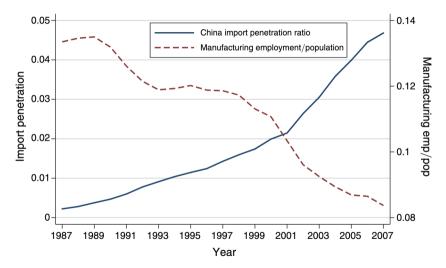
Do adverse economic shocks tighten social norms?

- Data: Exogenous variation in local U.S. labor market condtions induced by trade with China b/w 1990 and 2007 the "China Shock" Autor + 2013
- Empirical strategy: First-difference equation

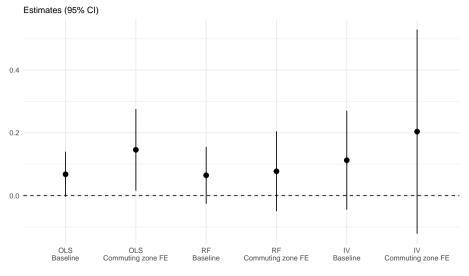
 Δ Tightness_{*c*(*r*)*t*} = $\beta \Delta$ Local trade exposure_{*ct*} + $X_c \gamma + \alpha_r + \alpha_t + \varepsilon_{c(r)t}$

- c, r, t denote commuting zone, census-region, period
- Δ Local trade exposure is change in local import competition with China from t 1 to t
- Xc: baseline employment share in manufacturing
- α_r : census-region fixed effects, removing regional factors that smoothly change over time
- α_t : period-fixed effects, absorbing time-variant factors affecting all commuting zone
- Standard errors clustered on states

Local trade exposure and manufacturing employment in U.S.



Adverse economic shocks increase norm tightness in newspapers



 \Rightarrow 1% \Uparrow trade exposure increase norm tightness by \approx 0.1 s.d. or 10% of gap b/w VT - AR

Take-aways

- We study historical psychology through the lens of thousands of local newspapers from all U.S. states and going back to the 1700s
- We propose best practices dictionary based approaches; validation checks are key
- Consistent with previous studies, we find norms in the U.S. loosened over the past 200 years, while local adverse shocks causes local tightening
- Unable to conclude that the geography of norm tightness changed in the 1950s; possible that the use or meaning of keywords included in the dictionary changed
 - \Rightarrow Will train language models on the newspaper corpus to track embeddings over time

Our interdisciplinary newspaper team

Mohammad Atari Psychology

Pramit Chaudhuri Classics and Comparative Literature

Joseph Dexter Data Science

Max Posch Economics

Joe Henrich Anthropology and Psychology

Jonathan Schulz Economics